

ST. MARGARET SR. SEC. SCHOOL MID TERM EXAMINATION 2024-25 MATHEMATICS (041) CLASS XII SAMPLE PAPER.

Time: 3Hr

M.M: 80

GENERAL INSTRUCTIONS:

Read the following instructions very carefully and follow them:

- i) Question paper is divided into 5 sections-Section A, B,C,D and E.
- In Section A- Question Number 1 to 18 are Multiple Choice Questions(MCQ) type and Question Number 19 to 20 are Assertion-Reason based questions of 1 mark each.
- iii) In Section B-Question Number 21 to 25 are Very Short Answer(VSA) type questions of 2 marks.
- iv) In Section C- Question Number 26 to 31 are Short Answer(SA) type questions carrying 3 marks each.
- v) In Section D-Question Number 32 to 35 are Long Answer(LA) type questions carrying 5 marks each.
- vi) In Section E-Question Number 36 to 38 are case study based questions carrying 4 marks each.
- vii) There is an internal choice in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.

SECTION-A

1. The number of equivalence relation in the set $\{1,2,3\}$ containing the elements (1,2) and (2,1) is (a) (b)1 (c) 2 (d) 3 0 2. $\int_{-1}^{1} e^{|x|} dx =$ (a) 2e-1 (b) 2e-2 (c) e²-1 (d) e-2 3. If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$ then value of a+b-c+2d is (b) 10 (c) 4 (d) -8 (a) 8 4. If |A| = 2 where A is a 2x2 matrix then $|4A^{-1}| =$ (b) 2 (a) 4 (c) 8 (d) 32 5. The function f(x) = [x], greatest integer function is continuous at (a_ 4 (b) -2 (c) 1 (d) 1.5 6. If $y = sin^2(x^3)$ then dy/dx = $2\sin x^3 \cos x^3$ (b) $3x^3 \sin x^3 \cos x^3$ (c) $6x^2 \sin x^3 \cos x^3$ (d) $2x^2 \sin^2(x^3)$ (a) 7. If $f(x) = a(x-\cos x)$ is strictly decreasing in R then a belongs to (a) (b) (0,∞) (C) (-∞ ,0) (d) $(-\infty, -\infty)$ {0} 8. The total cost C (x) in rupees associated with the production of x units of an item is given by $C(x) = 0.005x^3 - 0.002x^2 + 30x + 5000$, then value of marginal cost when 3 units are produced is (b) 3.02 (c) 300.2 (d) 0.3002 (a) 30.02 9. $\int \frac{secx}{secx-tanx} \, dx =$ Secx-tanx +C (b) secx+ tanx +C (c) tanx-secx +C (d) - secx-tanx+C (a) 10.If $f(x) = \int_0^x tsint dt$ then f'(x) =Cosx+ xsinx (b) xsinx (c) x cosx (d) sinx + x cosx. (a)

11. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 4 + 3\cos x$ is (a) Bijective (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto. 12. Let $\theta = \sin^{-1}(\sin(-600^{\circ}))$, then value of $\theta =$ (C) $\frac{2\pi}{3}$ (a) $\frac{\pi}{3}$ (d) $\frac{-2\pi}{3}$ (b) $\frac{\pi}{2}$ 13. The number of all possible matrices of order 3x3 with each entry 0 or 1 is (a) 27 (b) 18 (c) 81 (d) 512 14. If x=-4 is aroot of $\begin{vmatrix} x & 2 & 3 \\ 1 & x & 1 \end{vmatrix} = 0$ then the sum of the other two roots is $|3 \ 2 \ x|$ (b) -3 (d) 5 (a) 4 (c) 2 15. the value of $\int e^x secx(1+tanx) dx$ is (a) $e^x cosx + C$ (b) $e^x secx + C$ (c) $e^x sinx + C$ (d) $e^x tanx + C$ 16. The value of $\int 2^x 3^x dx =$ (a) $\frac{6^x}{\log 6}$ +C (b) $5^x \log 5$ +C (c) $\frac{5^x}{\log 5}$ +C (d) $\frac{3^x}{\log 3}$ +C 17. The value of $\cot(\cos^{-1}(\frac{7}{25}))$ is (a) $\frac{25}{24}$ (b) $\frac{25}{7}$ (c) $\frac{24}{25}$ (d) $\frac{7}{24}$ 18. If $y = \cos^{-1}(\sin x)$ then dy/dx =(b) -1 (c) -sinx (d) cosx (a) 1 **Assertion-Reason Based Questions**

In the following questions 19 and 20, a statement of Assertion(A) is followed by a statement of a Reason(R). Choose the correct answer out of the following choices:

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- (c) (A) is true and (R) is false.
- (d) (A) is false and (R) is true.
- 19. Assertion: $\sin^{-1}(\sin x) = x$ for all $x \in [-\pi/2, \pi/2]$ Reason: $\sin^{-1}(\sin 7\pi/6) = 7\pi/6$.

20. Assertion: The value of determinant A,
$$A = \begin{bmatrix} 3 & -3 \\ 2 & -2 \end{bmatrix}$$
 is zero.

Reason : A is invertible matrix.

SECTION- B

21. If A and B are symmetric matrices, such that AB and BA are both defined then prove that AB-BA is a skew symmetric matrix.

22. The side of an equilateral triangle increasing at the rate of 2cm/sec. At what rate its area is increasing when its edge is 12 cm.

23. Find the value of
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+sinx} dx$$
.
24. For what value of k is the function $f(x) = \begin{cases} \frac{sin5x}{3x} + \cos x & \text{if } x \neq 0 \\ K & \text{if } x = 0 \end{cases}$

Continuous at
$$x=0$$
.

25. Draw the graph of $\sin^{-1}x$.

SECTION-C

26. Check whether the relation R in R defined by R= { (a,b) : $a \le b^2$ is reflexive , symmetric or transitive.

27. Find the absolute maximum and minimum values of $f(x) = \sin^2 x \cdot \cos x \cdot x \in [0, \pi]$.

OR

Find the values of x for which $y = sin^4x + cos^4x$ is strictly increasing or decreasing function.

28. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ then show that A^3 -23A-40I= O. 29. $\int_{-\pi}^{\pi} (cosax - cosbx)^2 dx.$ 30. $\int \frac{2x}{(x^2+1)(x^2+2)} dx$ OR Find : $\int [\log \log(x) + (\frac{1}{\log x})^2) dx.$ 31. If x= sint and y= sinpt then prove that (1-x²) y₂-xy₁+ p²y= 0. OR If x = asin2t (1+cos2t) and y = bcos2t(1-cos2t) then find dy/dx at x = $\frac{\pi}{4}$. **SECTION-D** 32. $\int_0^{\frac{\pi}{2}} logsinxdx \, dx$. Evaluate : $\int_0^1 tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right)$. 33. Show that the function f:R \rightarrow R defined by f(x)= 2x³-7 for all x \in R is bijective. 34. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4r}{3}$. Also find its maximum volume. 35. If A = $\begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$ find A⁻¹. Hence solve the system of equations: If $A = \begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$, show that $A'A^{-1} = \begin{bmatrix} cos2x & -sin2x \\ sin2xx & cos2x \end{bmatrix}$. **SECTION- E**

36. A function f(x) is differentiable at a point c in its domain if $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely. This limit, if it exists, is called the derivative of f(x) at x=c and is denoted by f'(c). Based on the above information answer the following: (i) Check whether f(x)=|x+1| is differentiable at x=-1.

(ii) If f(3)=6 and f'(3)=2, then find $\lim_{x\to 3} \frac{xf(3)-3f(x)}{x-3}$.

OR

If f(x) is differentiable at x=c, then find $\lim_{x\to 3} \frac{xf(c)-cf(x)}{x-c}$. 37. Amit,Biraj and Chirag were given the task of creating a square matrix of order 2. $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}, C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ were created by Amit ,Biraj , Chirag. (i) Find the sum of the matrices A,B,C; A+(B+C).

(ii) Evaluate $(A^{T})^{T}$.

(iii) Find the matrix AC-BC. OR Find the matrix (a+b)B when a=4,b=-2.

38. A tank, as shown in the figure below, formed using a combination of a cylinder and a cone, offers better drainage as compared to a flat bottomed tank.

A tap is connected to such a tank whose conical part is full of water.

Water is dripping out from a tap at the bottom at the uniform rate of $2 \text{ cm}^3/\text{s}$. The semi-vertical angle of the conical tank is 45°. Answer the following questions:

(i)Find the volume of water in the tank in terms of its radius r. (ii)Find rate of change of radius at an instant when $r = 2\sqrt{2}$ cm. (iii) Find the rate at which the wet surface of the conical tank is decreasing at an instant when radius $r = 2\sqrt{2}$ cm.

Find the rate of change of height 'h' at an instant when slant height is 4 cm.