SAMPLE PAPER FINAL TERM EXAMINATION 2023-24 SUBJECT: MATHEMATICS
 CLASS: VII

Time: 2.5Hrs
M.M: 60

IMPORTANT INSTRUCTIONS:

1) All questions are compulsory.
2) Q. 1 to Q .15 carry 1 mark each (MCQ).
3) Q. 16 to Q .22 carry 2 marks each.
4) Q. 23 to Q. 27 carry 3 marks each.
5) Q. 28 to Q. 31 carry 4 marks each.

SECTION-A (Q1 to Q15-1 mark each-MCQ)

Q1. Find the value of expression $4 x-3$ for $x=1$:
(a) 4
(b) -3
(c) 3
(d) 1

Q2. Divide $\frac{8}{7} \div\left(\frac{-8}{49}\right)$, the result is:
(a) 7
(b) -7
(c) 1
(d) -1

Q3. What is the longest side of a triangle called in an right-angled triangle?
(a) base
(b) perpendicular
(c) hypotenuse
(d) altitude

Q4. When 22.5% converted into a fraction, we get \qquad
(a) $\frac{8}{50}$
(b) $\frac{9}{4}$
(c) $\frac{3}{8}$
(d) $\frac{9}{40}$

Q5. $20,00,000$ in standard form is :
(a) 0.2×10^{5}
(b) 2.0×10^{6}
(c) 10.2×10^{6}
(d) 10.2×10^{5}

Q6. The rational number $\frac{21}{-28}$ in standard from is
(a) $\frac{-3}{4}$
(b) $\frac{3}{4}$
(c) $\frac{3}{7}$
(d) $\frac{-3}{7}$

Q7. The amount for ₹ 1000 for 2 years at 5% p.a. is ₹ \qquad .
(a) 1200
(b) 1500
(c) 1000
(d) 1100

Q8. Set of a positive and a negative integer whose difference is -3 .
(a) $-2,+5$
(b) $+5,-2$
(c) $+10,-7$
(d) $+1,-2$

Q9. The next term in the pattern: $-11,-8,-5,-2$, \qquad , \qquad
(a) $-5,-8$
(b) 5,8
(c) $2,-1$
(d) $-1,2$

Q10. A triangle is not possible with sides of lengths (in cm)
(a) $6,4,10$
(b) 5, 3, 7
(c) $7,8,9$
(d) 3, 7, 8

Q11. Simplify: $p+(p-q)+q+(q-p)$
(a) p
(b) q
(c) $p+q$
(d) $p-q$

Q12. The exponential form of 64 with base 2 is :
(a) 2^{4}
(b) 2^{5}
(c) 2^{6}
(d) 2^{7}

Q13. The area of circle of diameter 6.4 cm is
(a) $32153.6 \mathrm{~cm}^{2}$
(b) $321.536 \mathrm{~cm}^{2}$
(c) $3215.36 \mathrm{~cm}^{2}$
(d) $32.1536 \mathrm{~cm}^{2}$

Q14. Which of the following is not a pair of complementary angles?
(a) $60^{\circ}, 30^{\circ}$
(b) $66^{\circ}, 24^{\circ}$
(c) $0^{\circ}, 90^{\circ}$
(d) $160^{\circ}, 20^{\circ}$

Q15. Write the following statement in the form of an equation:
"The sum of three times x and 10 is 23 ".
(a) $3 x-10=23$
(b) $3 x+23=10$
(c) $3 x+10=23$
(d) $3 x-23=10$

SECTION-B (Q16 to Q22-2 marks each)

Q16. List four rational numbers between $\frac{-2}{6}$ and $\frac{-8}{7}$.
Q17. The temperature at 12 noon was $10^{\circ} \mathrm{C}$ above zero. If it decreases at the rate of $2^{\circ} \mathrm{C}$ per hour until midnight, at what time would the temperature be $8^{\circ} \mathrm{C}$ below zero? What would be the temperature at mid-night?

Q18. Identify the terms and the factors of $-y^{2}-y z-z^{2}$.
Q19. Express 540 as the product of powers of prime factors.
Q20. Find the base, if the area of the triangle is $48 \mathrm{~cm}^{2}$ and height is 8 cm .
Q21. 30. Draw figures for the following:
a) In $\triangle A B C, B E$ is a median.
b) In $\triangle P Q R, P Q$ and $P R$ are altitudes of the triangle.

Q22. Juhi sells a washing machine for ₹ 13,500 . She loses 20% in the bargain. What was the price at which she bought it?

SECTION-C (Q23 to Q27-3 marks each)

Q23. Verify that $a \div(b+c) \neq(a \div b)+(a \div c)$ for each of the following values of $a=12, b$ $=-4$ and $\mathrm{c}=2$.

Q24. Sachin scored twice as many runs as Rahul. Together, their runs fell two short of a double century. How many runs did each one score?

Q25. Subtract $\left(-m^{2}+5 m n\right)$ from $\left(4 m^{2}-3 m n+8\right)$
ii) Add $\left(x^{2}-y^{2}-1\right)$, $\left(y^{2}-1-x^{2}\right)$, and $\left(1-x^{2}-y^{2}\right)$

Q26. Find the difference of sum of $\frac{-8}{19}+\frac{(-2)}{57}$ and sum of $\frac{-6}{38}+\frac{(3)}{57}$
Q27. In an isosceles triangle, a base angle is four times its vertex angle. Find all the angles of a triangle.

SECTION-D (Q28 to Q31 - 4 marks each)

Q28. A 25 m long ladder is set against the wall of a house and just reaches a window at a height of 24 m above ground level. How far is the lower end of the ladder from the base of the wall?

Q29. Simplify using laws of exponents and the mention the laws: $\frac{2^{4} \times 625}{10^{3} \times 16 \times 5^{4}}$
Q30. In the adjoining figure, a is parallel to d and I is the tranversal. Find all the unknown angles if $\angle 2=45^{\circ}$:

Q31. If $P=5 x^{3}+3 x^{2}-4 x+1, Q=3 x^{3}+5 x^{2}+3 x-8$ and $R=6 x^{3}-4 x^{2}-7 x+3$, find $(P+Q)-R$.

