

ST. MARGARET SR. SEC. SCHOOL D-Block, Prashant Vihar, Rohini, Delhi - 110085

SAMPLE PAPER (2023-24) MATHEMATICS CLASS-VIII

Time: 2.5 hrs.

M.M.: 60

<u>SECTION-A</u> (Q1 to Q15 – MCQ Questions of 1 mark each)

Write correct option along with answer.

Q1. Find the co-effici	ent of x^2 in the pro	oduct of $(2-x)(5x)$	x – 3)	
	(b) 5			
Q2. $\sqrt[3]{2 \times 2 \times 2 \times 5 \times 5}$	< 5 × 5 is: -			
(a) 2	(b) 5	(c) 8	(d) 10	
Q3. $3^3 \times \frac{1}{27}$ is:				
(a) 3 ⁰	(b) 3 ⁻⁶	(c) 3 ⁶	(d) 27 ⁻³	
Q4. The total non-sq	uare numbers that	t lie between squ	are of 30 and 3	1 are:
(a) 59	(b) 60	(c) 61	(d) 62	
Q5. The sum of the i	interior angles of a	a nonagon is:		
(a) 1080 ⁰	(b) 1440 ⁰	(c) 1260 ⁰	(d) 1620 ⁰	
Q6. The one's digit o	f the cube of the n	number 111 is		
(a) 1	(b) 2	(c) 3	(d) 9	
Q7. The standard for	m of 0.000064 is:			
(a) 64x10 ⁴	(b) 64x10 ⁻⁴	(c) 634x10 ⁵	(d) 6.4x10 ⁻⁵	
Q8. $(-1)^{51}$ is equal to				
(a)-1	(b) 1	(c) 51	(d)-51	
Q9. If 3 (t-3) = 5 (2t	: – 1), then t equa	ls		
(a) 2	(b) $\frac{1}{2}$	(c) -2	(d) $\frac{-4}{7}$	
Q10. Factorise: $2x^3y^2$	$x^{2} - 5x^{2}y^{3}$			
(a) $xy(2x^2y-5xy^2)$		(b) $x^2y^2(2x-5)$	iy)	
(c) $2x^3y^2(1-5x^2y^3)$		(d) $x^2(2xy^2-5)$		
Q11. The side of a cu	ibical box with sur	face area of 600	cm² is:	
(a) 100cm	(b) 10cm	(c) 6cm	(d) 600cm	
Q12. The area of a rh	nombus is 240 cm ²	² and one of the c	liagonals is 24 d	cm. The other diagonal
is:				
(a) 15cm	(b) 3840	cm (c) 6	õcm	(d) 20cm

Q13. The value of x in $\frac{-2}{3} = 2x$ is

(a) $\frac{1}{3}$ (b) $x = -\frac{1}{3}$ (c) 3 (d) -3

Q14. The common factor of $8a^2b^4c^2$, $12a^4bc^4$ and $20a^3b^4$ is

- (a) a^4b^4 (b) a^2b^2 (c) $4a^2b^2$ (d) $4a^2b$
- Q15. The quotient of $12a^8b^8 \div (-4a^6b^6)$ is

(a) $3a^2b^2$ (b) $3a^2b$ (c) $3ab^2$ (d) $-3a^2b^2$

SECTION-B

(Q16 to Q22 carry 2 marks each)

- Q16. Find square root of 180625 by long division method.
- Q17. The four angles of a quadrilateral are in the ratio 3:4:5:6. Find the angles.
- Q18. Find the least number by which 2187 must be divided to make it a perfect cube.
- Q19. ABCD is a parallelogram. OA = y+5, OB = x+y, OC = 22cm, OD = 15cm.

Find x and y.

- Q20. Find x: $4^{5x-3} = 16^{3x-5}$
- Q21. Factorise: $4x^2 8x + 4$
- Q22. Solve: $5x + \frac{7}{2} = \frac{3}{2}x 14$

SECTION-C

(Q23 to Q27 carry 3 marks each)

- Q23. Simplify: $7x^2 + x(x + y 1) y(2x + 4) 3(x y 4)$
- Q24. A cuboid is of dimensions 60cm x 54cm x 30cm. How many small cubes with side 6cm

can be placed in the given cuboid?

- Q25. Solve: $m \frac{m-1}{2} = 1 \frac{m-2}{3}$
- Q26. Divide: $(x^2 7x + 12)$ by (x-3)
- Q27. Evaluate: ³√500 x ³√128

SECTION-D

(Q28 to Q30 carry 4 marks each)

Q28. Draw a linear graph for the table given below which shows the quantity of petrol and its cost.

Number of litres of petrol	Number of female doctors
10	500
15	750
20	1000
25	1250

Q29. Suppose 2kg of sugar contains 9 \times 10⁶ crystals. How many sugar crystals are there in

- (i) 5 kg of sugar
- (ii) 1.2 kg of sugar
- Q30. Factorise:
 - (i) $81x^4 625$ (ii) $a^2 + 4ab + 4b^2$

<u>Section-E</u>

Case study

Q31. For an experiment in Botany, two different plants, Plant A and Plant B were grown under similar laboratory conditions. Their heights were measured at the end of each week for 3 weeks. The results are shown by the following graph.

2							
						Plar	B
6						1.	
8						RV.	10.
6				1			
4			1	1		h	H
2			1				
	 	K					

- (a)How high was Plant A after (i) 2 weeks (ii) 3 weeks?
- (b) How high was Plant B after (i) 2 weeks (ii) 3 weeks?
- (c) How much did Plant A during the 3rd weeks?
- (d) During which week did Plant A grow most?
- (e) During which week did Plant B grow least?
- (f) How much did Plant B grow from the end of the 2nd week to the end of the 3rd week?